DC 107, A NOVEL ANTITUMOR ANTIBIOTIC PRODUCED BY A *STREPTOMYCES* SP.

Sir:

We have screened microorganisms, isolated from soil and plants for their ability to produce antitumor antibiotics, and now have isolated a novel antitumor antibiotic DC 107 which has the molecular formula $C_{22}H_{26}N_2O_6S_3$ from a culture broth of a streptomycete. In this communication, we report the production, isolations and characterization of DC 107.

The producing organism was isolated from a soil collected in Natori-shi, Miyagi, Japan and was taxonomically classified as *Streptomyces* sp. The seed medium contained glucose 10 g, soluble starch 10 g, Bacto-tryptone 5 g, yeast extract 5 g, beef extract 3 g, CaCO₃ 2 g per liter (pH 7.2 prior to sterilization). It was inoculated with a stock culture and incubated for 48 hours at 28°C. The vegetative seed culture (0.9 liter) was used to inoculate into a 30-liter jar fermentor containing 18 liters of medium consisting of soluble starch 50 g, soybean meal 20 g, CaCO₃ 5 g, KH₂PO₄ 5 g, MgSO₄·7H₂O 0.5 g and

antiform agents LG 109 (Asahi Denka Kogyo) and KM-70 (Shinetsu Kagaku) per liter (pH 7.0 prior to sterilization). The jar fermentor was stirred at 300 rpm with aeration at 18 liters/ minute at 28°C. The antibacterial activity was measured by the paper-disc method on nutrient agar using *Bacillus subtilis* as the test organism and usually reached a maximum after 2 days incubation at 28°C.

The culture liquor was filtered and the filtrate, which was adjusted to pH 4.0 with AcOH, was applied to a column of Diaion HP-20 (Mitsubishi Chemical Industries Limited). The column was washed with deionized water - MeOH -AcOH (5:5:0.02) and eluted with MeOH -AcOH (10:0.02). The active fractions were combined, diluted with equal volume of deionized water and then applied to a column of Diaion The column was washed with HP20ss. water - MeOH - AcOH (5:5:0.02) deionized and antibiotic was eluted with deionized water -MeOH - AcOH (2:8:0.02). The active eluate was concentrated, extracted with EtOAc at pH 4.0 and concentrated to dryness. Further purification was effected by two stages of silica gel chromatography using hexane - EtOAc - AcOH

(5:5:0.1) and CHCl₃ - MeOH (50:1) as eluents to give a crude precipitate. The crude solid product was recrystallized from CHCl₃ to yield 50 mg of white-needled crystals of DC 107.

DC 107 showed the following physico-chemical properties: MP 155°C (dec); readily soluble in MeOH, EtOAc, CHCl₃, DMSO but insoluble in H₂O and *n*-hexane; UV λ_{max}^{MeOH} nm (ε) 211 $(14,000), 322 (12,000); [\alpha]_{\rm D}^{25} -140^{\circ} (c \ 0.1,$ MeOH); elemental analysis, calcd for $C_{22}H_{26}N_2O_6S_3 \cdot \frac{3}{4}EtOAc: C 52.06, H 5.59, N$ 4.86, S 16.68; found: C 51.93, H 5.39, N 4.75, S 16.96; high-resolution fast atom bombardment mass spectroscopy (HRFAB-MS) m/z 511.1004 (M^++1) (calcd for $C_{22}H_{27}N_2O_6S_3$: 511.1031). The IR spectrum of DC 107 is shown in Fig. 1. The ¹H NMR is given in Fig. 2. The ¹³C NMR spectrum (Table 1) showed 22 carbon resonances. It gave a positive reaction to ninhydrin, panisidine, iodine-azide reagents, but was negative to Rydon-Smith.

It is clear from the molecular formula of DC

107, $C_{22}H_{28}N_2O_6S_8$, that the compound is a novel compound. Comparing with the antitumor antibiotic having sulfur in the molecule, *e.g.*, esperamicins^{1,2)}, calichemicins³⁾, DC 107 is evidently different in UV, optical rotation, IR and NMR spectra, indicating that DC 107 is a new class of antibiotics. However, structure determination of DC 107 seems to be difficult by the spectroscopic studies, because DC 107 is a unique structure different from that of known antibiotics and is unstable to chemical degradation reactions. Effort on structure determination by X-ray analysis are in progress and will be published elswhere.

DC 107 exhibits a broad antimicrobial activity against Gram-positive and Gram-negative bacteria but not against fungi (Table 2). DC 107 was effective against murine leukemia P388 (ip), showing significant increase in life span (ILS 57%) at a dose of 0.38 mg/kg (ip) (Table 3). DC 107 also showed antitumor activity against mouse sarcoma 180 (sc), exhibiting the ratio of

Table 1. ¹³C NMR data of DC 107 in DMSO- d_6 (100 MHz).

Chemical shift (ppm)	m
205.6	S
199.8	S
171.0	S
168.8	s
152.4	S
141.8	d
140.7	S
129.6	d
129.5	d
128.4	d
124.2	d
122.1	đ
86.5	S
71.6	đ
68.9	S
46.5	d
35.5	t
31.7	t
29.6	t
23.5	q
20.7	q
19.5	q

m: Multiplicity.

Table 2. Antimicrobial activity of DC 107.

Organism	MIC (µg/ml)
Staphylococcus aureus ATCC 6538P	1.6
Enterococcus faecium ATCC 10541	1.6
Bacillus subtilis No. 10707	0.08
Klebisiella pneumoniae ATCC 10031	1.6
Escherichia coli ATCC 26	2.6
Pseudomonas aeruginosa Bin H No. 1	5.2
Salmonella typhi ATCC 9992	20.8
Proteus vulgaris ATCC 6897	83.3
Shigella sonnei ATCC 9290	10.4
Candida albicans ATCC 10231	>100

Table 3. Antitumor activity of DC 107 against P388 lymphocytic leukemia in mice^a.

Dose ^b (mg/kg)	ILS (%)
1.5	49
0.75	45
0.38	57
0.19	34
0.095	23

^a Tumor inoculated ip on day 0.

^b Single dose given ip on day 1.

median tumor volume (T/C 41%) at a dose of 1 mg/kg (iv). The LD_{50} value of DC 107 was 2.8 mg/kg (iv) in mouse. Further detailed studies on antitumor spectra and toxicity of DC 107 are in progress.

Acknowledgments

The authors are grateful to Drs. Такао IIDA, YUTAKA SAITO and HIROSHI SANO for helpful discussion, to Dr. KEIICHI TAKAHASHI for continuous support.

Mitsunobu Hara
Isami Takahashi
Mayumi Yoshida
Kozo Asano
Isao Kawamoto
MAKOTO MORIMOTO [†]
Hirofumi Nakano

Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., Machida-shi, Tokyo 194, Japan ¹Pharmaceutical Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., Nagaizumi-cho, Shizuoka 411, Japan

(Received August 4, 1988)

References

- KONISHI, M.; H. OHKUMA, K. SAITOH, H. KAWA-GUCHI, J. GOLIK, G. DUBAY, G. GROENEWOLD, B. KRISHNAN & T. W. DOYLE: Esperamicins, a novel class of potent antitumor antibiotics. I. Physico-chemical data and partial structure. J. Antibiotics 38: 1605~1609, 1985
- 2) GOLIK, J.; G. DUBAY, G. GROENEWOLD, H. KAWAGUCHI, M. KONISHI, B. KRISHNAN, H. OHKUMA, K. SAITOH & T. W. DOYLE: Esperamicins, a novel class of potent antitumor antibiotics. 3. Structure of esperamicins A_1 , A_2 , and A_{1b} . J. Am. Chem. Soc. 109: 3462~3464, 1987
- LEE, M. D.; T. S. DUNN, C. C. CHANG, G. A. ELLESTAD, M. M. SIEGEL, G. O. MORTON, W. J. MACGAHREN & D. B. BORDERS: A novel family of antitumor antibiotics. 2. Chemistry and structure of calichemicin r₁^T. J. Am. Chem. Soc. 109: 3466~3468, 1987